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Abstract—This paper proposes an improved ε constrained han-
dling method (IEpsilon) for solving constrained single-objective
optimization problems (CSOPs). The IEpsilon method adaptively
adjusts the value of ε according to the proportion of feasible so-
lutions in the current population, which has an ability to balance
the search between feasible regions and infeasible regions during
the evolutionary process. The proposed constrained handling
method is embedded to the differential evolutionary algorithm
LSHADE44 to solve CSOPs. Furthermore, a new mutation
operator DE/randr1*/1 is proposed in the LSHADE44-IEpsilon.
In this paper, twenty-eight CSOPs given by “Problem Definitions
and Evaluation Criteria for the CEC 2017 Competition on
Constrained Real-Parameter Optimization” are tested by the
LSHADE44-IEpsilon and four other differential evolution algo-
rithms CAL-SHADE, LSHADE44+IDE, LSHADE44 and UDE.
The experimental results show that the LSHADE44-IEpsilon
outperforms these compared algorithms, which indicates that the
IEpsilon is an effective constraint-handling method to solve the
CEC2017 benchmarks.

Index Terms—Constraint-handling Technique, Constrained
Single-objective Optimization, Differential Evolution

I. INTRODUCTION

Many real-parameter optimization problems in the real
world are subject to constraints [1]. Without loss of generality,
a CSOP can be defined as follows:

minimize f(x), x = (x1, ..., xD) ∈ S (1)
subject to gi(x) ≤ 0, i = 1, . . . , q

hj(x) = 0, j = 1, . . . , p

where f(x) is the objective function. x is the decision vector
and xi is the i-th component of x. S =

∏D
i=1 [Li, Ui] is the

decision space, where D is the dimension of x. Li and Ui
are the lower bound and the upper bound of xi, respectively.
gi(x) ≤ 0 is the i-th inequality constraint, and hj(x) = 0 is the
j-th equality constraint. In order to evaluate the violation of the

constraint functions, the overall constraint violation method is
adopted. It summaries all constraints into a scalar value. The
overall constraint violation of the solution x can be defined as
follows:

φ(x) =

q∑
i=1

max(gi(x), 0) +

p∑
j=1

max(|hj(x)| − σ, 0) (2)

In this paper, σ is set as 0.0001 according to [2]. If φ(x) is
equal to 0, the solution x is feasible, otherwise it is infeasible.

To tackle complex numerical optimization problems, differ-
ential evolution (DE) is proposed [3], which has been proved
to be an efficient algorithm in the past two decades [4]. In a
general framework of DE, the scaling factor F , the crossover
rate CR and the population size N are three important factors,
which need to be preset. A series of variants of DE are
proposed to adjust these factors.

For example, FADE [5] regards the information of the
population in two generations as the input of the fuzzy logic
control and generate the values of F and CR. jDE [6] updates
F and CR with different probabilities in each generation.
JADE [7] generates a pair of F and CR for each individual,
according to Cauchy and normal distribution with an adaptive
mean µF and µCR respectively. µF and µCR are updated
according to the pairs of CR and F , which have generated
successful trial vectors in the previous generation. CoDE [8]
applies several groups of F and CR in DE. SHADE [9]
proposes a new factor adaption setting technique according to
a memory of successful CR and F . LSHADE [10] is a variant
of SHADE, which reduces the population size N linearly with
the increasing of objective function evaluations (FEs).

In DE, a suitable evolutionary strategy (such as the mutation
operators) should be selected. The current-to-pbest/1 [7] is a
kind of greedy strategy used in LSHADE [10]. To enhance
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the robust of LSHADE for different types of CSOPs, an
improved version of LSHADE (named LSHADE44) using 4
kinds of strategies adaptively during the evolutionary process,
is proposed in [11].

To solve CSOPs, an efficient constraint-handling method
is also an important component for heuristic algorithms. Ac-
cording to [12], constraint-handling methods can be generally
classified into (1) Penalty approaches; (2) Repair approaches;
(3) Separatist approaches and (4) Hybrid approaches.

As a representative separatist approach, constrained dom-
inance principle (CDP) is widely used [13]. It is defined as
follows (for minimization CSOPs):
(1) When two feasible solutions are compared, the one with

the smaller objective value is better than the other.
(2) A feasible solution is always better than an infeasible

solution.
(3) When two infeasible solutions are compared, the one with

the lower overall constraint violation is better than the
other.

As a modified version of CDP, an ε constraint-handling
method [14] is defined as follow (for minimization CSOPs):
(1) When the overall constraint violations of two solutions

are both lower than or equal to ε, the one with the smaller
objective value is better than the other.

(2) When the overall constraint violations of two solutions are
equal, the one with the smaller objective value is better
than the other.

(3) When at least one of the constraint violations of two so-
lutions are larger than ε, the one with the lower constraint
violation is better than the other.

The ε constraint-handling method can help the working
population fully explore the infeasible regions, which prevents
the population trapping into local optimum. When ε = 0, the
ε constraint-handling method is the same as CDP.

In the original framework of the ε constraint-handling
method [14], the value of ε is decreasing with the increasing of
FEs. When the proportion of feasible solutions in the current
generation (PFS) is small, the ε should be set small in order
to achieve more feasible solutions. When the PFS is large,
the ε should be also set large in order to get some infeasible
solutions, which can help the working population get across
infeasible regions. In this paper, we propose an improved
version of ε constrained method (IEpsilon) to adaptively adjust
the value of ε according to the PFS.

The proposed IEpsilon is applied to the framework of
LSHADE44, and a new strategy named DE/randr1*/1 is
proposed to the original framework. DE/randr1*/1 uses the
target individual to replace a random parent individual, which
can reduce the difference between the generated trial vector
and the target individual to enhance the local search for the
target individual.

28 problems [2] with 4 kinds of dimensions (D =
10, 30, 50, 100) are tested by the proposed LSHADE44-
IEpsilon and other four DE algorithms CAL-SHADE [15],
LSHADE44+IDE [16], LSHADE44 [11] and UDE [17] in 25
independent runs.

The rest of this paper is organized as follows. Section II
introduces differential evolution (DE). Section III introduces
the IEpsilon method and the proposed LSHADE44-IEpsilon.
Section IV gives the experimental results of LSHADE44-
IEpsilon and other four DE algorithms on the test problems,
and Section V concludes the paper.

II. DIFFERENTIAL EVOLUTION

The DE initially generates a population P with a size of
N in the D-dimension decision space S. In each generation,
mutation and crossover operators with parameters Fi and CRi
are applied to each individual xi (i = 1, ...N ). Then a trial
vector yi is generated. If f(yi) is lower than f(xi), xi will
be replaced by yi. The algorithm continues to evolve the
population until the stopping criteria are met, and then it
outputs the best solution of population. The pseudo-code of
DE is shown in Algorithm 1.

Algorithm 1: Differential Evolution
Input:

1) a SOP and a stopping criterion.
2) N : the population size.

Output: A best solution xbest;
Step 1: Initialization: Randomly generate a population
P = {x1, ...,xN} in S and evaluate each solution in P .
Step 2: Population update
For i = 1, . . . , N , do

a) Perform a mutation operator on xi to generate vi.
b) Perform a crossover operator on vi and xi to

generate a trial vector yi.
c) Update of Solutions: If f(yi) < f(xi), replace xi

with yi.
Step 3: Termination If stopping criteria are satisfied,
output the best solution xbest in P . Otherwise, go to
Step 2.

Some classical mutation operators are introduced as follows:
(1) DE/rand/1:

vi,G = xr1,G + Fi · (xr2,G − xr3,G)
(2) DE/randr1/1 [18]:

vi,G = xr1∗,G + Fi · (xr2∗,G − xr3∗,G)
(3) DE/current-to-best/1:

vi,G = xi,G +Fi · (xbest,G−xi,G) +Fi · (xr1,G−xr2,G)
(4) DE/current-to-pbest/1:

vi,G = xi,G+Fi · (xpbest,G−xi,G) +Fi · (xr1,G−xr2,G)

where xi,G (i = 1, 2, ..., N ) is the target solution in the
generation G. vi,G is a vector generated by the mutation
operator. r1, r2 and r3 are different integer labels uniformly
chosen from the set {1, 2, ..., N} \ {i}. r1∗ ∈ {r1, r2, r3} is
the label which makes xr1∗,G be the best solution, and then
r2∗, r3∗ are the two rest labels. xbest,G is the best solution
in the current population. p is a random value falling in
[1/N, 0.2]. xpbest,G is the solution which is randomly chosen
from the 100p% best solutions in the current population. There
are two versions of DE/current-to-pbest/1 operators [7], and
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the version of the operator without external archive is chosen
in this paper.

After performing a mutation operator, a crossover operator
will be performed for xi,G = (xi,1,G, ..., xi,D,G) and vi,G =
(vi,1,G, ..., vi,D,G). There are mainly two crossover operators
in DE, which are listed as follows::
(1) Binomial crossover (Bin):

ui,j,G =

{
vi,j,G if randj(0, 1) ≤ CRi or j = jrand

xi,j,G otherwise
where jrand is an integer randomly chosen from [1, D]
and randj(0, 1) is a random number falling in [0, 1].

(2) Exponential crossover (Exp) [19]:

ui,j,G =

{
vi,j,G for j = 〈l〉D, 〈l + 1〉D, ..., 〈l + L− 1〉D
xi,j,G otherwise

where 〈〉D denotes a modulo function with modulus D,
l is the starting integer number randomly chosen from
[0, D − 1]. The integer L is drawn from [0, D − 1] with
the probability Pr(L ≥ v) = CRv−1i (v > 0).

III. LSHADE44-IEPSILON

A. LSHADE44

1) Successful History based Parameter Settings: As we
have discussed, each individual xi is associated with its
parameter pair {Fi, CRi}. In LSHADE [10], F and CR are
generated by successful history memories. There are a pair
of memories MF and MCR with H cells, which store the
adaptive values mF and mCR.
k is a parameter, which is initialized as 0. At the beginning

of each generation, two sets SF and SCR are both initialized
as ∅, which are used to store successful parameters. For each
individual xi (i = 1, 2, ..., N ), when its trial vector yi is better
than xi, Fi and CRi will be inserted to the sets SF and SCR.
Then at the end of each generation, if SF and SCR are not
empty, the value of k will be increased by 1. When the value
of k is larger than H , the value of k will be reset as 1. Then,
the adaptive values mF and mCR are calculated by Eq (3)-(8),
which will be stored into the k-th cell of memories MF and
MCR.

mF = meanWL(SF ) if SF 6= ∅ (3)

mCR = meanWA(SCR) if SCR 6= ∅ (4)

meanWL(SF ) =

∑|SF |
t1=1 ωt1F

2
t1∑|SF |

t2=1 ωt2Ft2
(5)

meanWA(SCR) =

|SCR|∑
t=1

ωtCRt (6)

ωt =
∆funct∑|SCR|

u=1 ∆funcu
(7)

∆funct = |func(xt)− func(yt)| (8)

where func(·) is the objective function f(·) when φ(x) =
φ(y) but f(x) > f(y), according to Eq (1), (2). func(·) is
the constraint violation function φ(·) when φ(x) > φ(y).

When the MF and MCR are both empty, the means µF
and µCR are both set as 0.5. Otherwise, a random integer ri
is selected from [1, H], and then the ri-th pair of values in
MF and MCR will be selected as the value of µF and µCR.

Before generating a trial vector yi, the two parameters
Fi and CRi are generated by using means µF and µCR as
follows:

Fi = randci(µF , 0.1) (9)

CRi = randni(µCR, 0.1) (10)

where randci(µ, σ) denotes a value generated by a Cauchy
distribution of mean µ and standard deviation σ. randni(µ, σ)
denotes a value generated by a normal distribution of mean µ
and standard deviation σ. Fi and CRi should both fall in the
interval [0, 1]. When their values are beyond [0, 1], Eq (9) or
(10) will be executed repeatedly till Fi, CRi ∈ [0, 1].

2) Linear Population Size Reduction: To improve the per-
formance of DE, a population size reduction method is adopted
in the original LSHADE. The population size N dynamically
decreases with the increasing of FEs according to Eq (11).

N = round[Nmax −
FEs

MaxFEs
(Nmax −Nmin)] (11)

where Nmax is the initial population size, and Nmin is the
minimal population size. MaxFEs is the allowed number of
function evaluations.

3) DE/randr1*/1: Here we propose a modified version of
DE/randr1/1 mutation operator, which is defined as follows:
DE/randr1*/1

vi,G = xr1∗,G + Fi · (xr2∗,G − xr3∗,G) (12)

where vi,G is the mutation vector of the target individual
xi,G, (i ∈ 1, ..., N) at the generation G. r1 and r2 are different
integer labels uniformly chosen from the set {1, 2, ..., N}\{i}.
r1∗ ∈ {r1, r2, i} is the label which makes xr1∗,G be the
best solution, and then r2∗, r3∗ are the two rest labels
{r1, r2, i} \ r1∗.

In the DE/randr1/1, all mutated individuals are not the
target individual. It may cause that the mutation vector differs
much from the target individual. The DE/randr1*/1 can reduce
the difference between the mutation vector and the target
individual, which can accelerate the local search for each
individual in the population.

4) Strategies Competing Selection: For different kinds of
problems, different evolutionary strategies should be adopted.
However, in real world, many optimization problems are
black-box problems. Without prior knowledge of problems,
various strategies applying to the DE simultaneously can en-
hance the robust of the algorithm for different problems. In this
paper, four groups of strategies are adopted in the LSHADE44:
(1) DE/current-to-pbest/1 and Bin; (2) DE/current-to-pbest/1



and Exp; (3) DE/randr1*/1 and Bin; (4) DE/randr1*/1 and
Exp.

A mechanism of strategies competition [11] is applied to the
LSHADE44 to adaptively select strategies during the process.
The selection probabilities are given to each strategies. At
the beginning of the evolution, the same probability (ql =
1/K for l = 1, 2, ...,K) is related to each strategy. When
a strategy is successful, the probability of each strategy is
updated as follows:

ql =
nl + n0∑K

k=1(nk) + n0
(13)

where nl is the successful count of the l-th strategy, and
n0 > 0 is a constant, which weakens the influence of a
random success of l-th strategy for ql. To avoid degeneration
of the algorithm, if any probability ql decreases below a given
parameter δ during the evolutionary process, each ql and nl
are reset as 1/K and 0.

5) Bound Constraint Handling: In this paper, when a
generated solution is evaluated, a bound constraint handling
technique [20] is executed. For x = (x1, ..., xi..., xD), if
xi < Li, we set xi = Li, and if xi > Ui, we set xi = Ui.

B. Improved ε Level Comparison

The original DE introduced above is suitable for the un-
constrained SOPs. To provide comparison rules for the DE on
CSOPs during the evolutionary process, the ε level comparison
<ε [21] is applied. Given an ε, a solution xa is considered
better than another solution xb according to Eq (14)

xa <ε xb ⇔


f(xa) < f(xb) if φ(xa), φ(xb) ≤ ε
f(xa) < f(xb) if φ(xa) = φ(xb)

φ(xa) < φ(xb) otherwise
(14)

where φ(·) is the overall constraint violation function and f(·)
is the objective function.

To balance the evolutionary search of the population be-
tween feasible and infeasible regions, an improved ε setting
approach is suggested as follows:

ε(k) =


φθ if k = 0

ε(k − 1)(1− FEs
Tc

)cp if rk < α and FEs < Tc

(1 + τ)φmax if rk ≥ α and FEs < Tc

0 if FEs ≥ Tc

(15)

where ε(k) is the value of ε and rk is the proportion of feasible
solutions (PFS) in the generation k. where φθ is the top θ-
th overall constraint violation of all individuals in the initial
population. Tc is the termination FEs and when FEs reaches
Tc the value of ε will be set as 0. cp and τ are defined by
users. α is a threshold to control the change of ε.

Algorithm 2: LSHADE44-IEpsilon
Input:

1) a SOP and a stopping criterion.
2) Nmax, Nmin: the maximal and the minimal popu-

lation sizes.
3) cp, θ, Tc, α, τ : parameters of IEpsilon.
4) H: the length of the historic memories.
5) n0, δ: parameters of strategy competition.

Output: A best solution xbest.
Step 1: Initialization:

a) Set probabilities ql = 1/4 for l = 1, 2, 3, 4.
b) Set counts nl = 0 for l = 1, 2, 3, 4.
c) Generate a population P = {x1, ...,xN}, N =
Ninit.

d) Evaluate f(xi) and φ(xi), i = 1, ..., N . Get the top
and the top θ constraint violations φmax and φθ.

e) Set ε = φθ.
Step 2: Population update
For i = 1, . . . , N , do

a) Choose the l-th strategy according to the ql, l =
1, 2, 3, 4.

b) Generate Fi and CRi according to the memories
MF and MCR.

c) Generate a trial vector yi, evaluate f(yi) and
φ(yi), update xbest and φmax.

d) If max(φ(yi)− ε, 0) < max(φ(xi)− ε, 0) then
1) replace xi with yi,
2) nl = nl + 1, update qs, s = 1, 2, 3, 4 according

to Eq (13),
3) store |φ(xi)− φ(yi)|, store Fi and CRi.

d) ElseIf max(φ(yi) − ε, 0) = max(φ(xi) − ε, 0) ∧
f(yi) < f(xi) then

1) replace xi with yi,
2) nl = nl + 1, update qs, s = 1, 2, 3, 4 according

to Eq (13),
3) store |f(xi)− f(yi)|, store Fi and CRi.

Step 4: Population size update
Update N according to Eq (11).
Step 5: Memories update
Update MF and MCR for each strategy according to Eq
(3) - (8).
Step 6: Epsilon update

a) Get the proportion of feasible solutions rk in the
current generation k.

b) If rk < α ∧ FEs < Tc then
ε = ε(1− FEs/Tc)cp,

c) ElseIf rk ≥ α ∧ FEs < Tc then
ε = (1 + τ)φmax,

d) ElseIf FEs ≥ Tc then
ε = 0.

Step 7: Termination If stopping criteria are satisfied,
output the best solution xbest. Otherwise, go to Step 2.



When the PFS is larger than α, the population is considered
to have lots of feasible solutions, and the ε gradually increases
with the generation increasing, which makes the population
search in the infeasible regions. Conversely, when the PFS
is lower than α, the population is considered to have few
feasible solutions, and the ε decreases with the generation
increasing, which makes the population tend to search for
feasible solutions.

C. The IEpsilon Embedded in LSHADE44

In this paper, the IEpsilon is embedded in the LSHADE44
to solve CSOPs, the pseudo-code of LSHADE44-IEpsilon is
shown in Algorithm 2. The best solution xbest updated by
each evaluation is the optimal result.

IV. EXPERIMENTAL STUDY

All 28 test instances defined in the report [2] are opti-
mized by the LSHADE44-IEpsilon in this paper. Each in-
stance is a single-objective optimization problem with some
inequality or equality constraints. 25 independent runs are
carried out for each problem with each kind of dimension
levels (D = 10, 30, 50, 100). The maximal FEs is set as
MaxFEs = 20000D. The experimental results are shown
in Table I - IV. As defined in [2], ‘Best’, ‘Median’, ‘Worst’,
‘Mean’ and ‘std’ in tables denote the best, the median, the
worst, the mean value and the standard deviation on the 25
runs. c is the sequence of three numbers, which indicates vi-
olated constraints of the median solution in ranges [1.0,+∞],
[0.01, 1.0] and [0.0001, 0.01], respectively. v is the mean of
all the constraints violation of the median solution. ‘SR’ is
the feasibility rate of the solutions obtained in 25 runs. vio is
the mean constraint violation value of all the solutions in 25
runs.

A. Experimental Settings

The parameter settings are summarized as follows:
1) Population size: the maximal population size Nmax =

5D, the minimal size Nmin = 5.
2) The length of historic memory: H = 10.
3) Parameters of strategy competition: K = 4, n0 = 2,

δ = 1/(5K) = 0.05.
4) DE/current-to-pbest/1 parameter: p = 0.2.
5) Parameters of IEpsilon: cp = 2, θ = 20%, Tc =

0.8MaxFEs, α = 0.5, τ = 0.1.

B. Experimental conditions

Experimental Conditions are shown in Table V:

TABLE V
PC CONFIGURE

System Windows7 64bit
CPU Intel(R) i7-6500U CPU @ 2.50GHz 2.50GHz
RAM 8GB

Language Matlab (Matlab 2017a)
Algorithm LSHADE44-IEpsilon

C. Algorithm Complexity

The algorithm complexities of the LSHADE44-IEpsilon on
4 kinds of dimension D are shown in Table VI in seconds,
where T1 = (

∑28
i=1 t1i)/28 and T2 = (

∑28
i=1 t2i)/28. t1i is

the computing time of 10000 evaluations for problem i. t2i
is the complete computing time for the algorithm with 10000
evaluations for problem i.

TABLE VI
ALGORITHM COMPLEXITY OF THE LSHADE44-IEPSILON

D T1 T2 (T2 − T1)/T1

10 0.246258721 0.714261721 1.9005
30 0.30420195 0.842962546 1.7711
50 0.378859571 1.022363696 1.6985
100 0.771647804 2.026898707 1.6267

D. Comparison Among LSHADE44-IEpsilon and Four DE
Algorithms

We compare LSHADE44-IEpsilon with four algorithms on
the 28 benchmarks of CEC2017 competition on constrained
real parameter optimization with 10, 30, 50 and 100 di-
mensions. These compared algorithms includes CAL-SHADE
[15], LSHADE44+IDE [16], LSHADE44 [11] and UDE [17].
All the experimental results of these four algorithms come
from the official website of CEC2018.

Two approaches for ranking two algorithms on one problem
with 25 runs are suggested in the technique report [2] as
follows.
• Ranking algorithms based on mean values;
• Ranking the algorithms based on the median solutions.

The summarized results on all benchmarks based on mean
values and median value are shown in Table VII and TableVIII.
The signs ‘+’, ‘-’ and ‘=’ indicate the numbers of problems,
on which the correlative algorithm performs better than, worse
than, and not better or worse than the LSHADE44-IEpsilon,
respectively.

According to [2], the rank value of each algorithm, which
consists of rank values based on mean values and median
solutions is shown in Table IX. The best algorithm will obtain
the lowest rank value.

The experimental results show that the LSHADE44-
IEpsilon has the best performance on these twenty-eight
benchmarks for all D ∈ {10, 30, 50, 100}.

V. CONCLUSIONS

The paper proposes a new constraint-handling technique
named IEpsilon for solving CSOPs. It utilizes the information
of the proportion of feasible solutions in the current population
to adjust the ε level adaptively, which has an ability to balance
the search of the population between feasible and infeasible
regions. The proposed LSHADE44-IEpsilon and other four
algorithms are tested on the CEC2017 benchmarks with 10,
30, 50 and 100 dimensions for 25 independent runs, the experi-
mental results show that the LSHADE44-IEpsilon outperforms
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TABLE I
VALUES ACHIEVED FOR D = 10, ALL RESULTS FOR C01 - C28.

Problem C01 C02 C03 C04 C05 C06 C07
Best 0 0 0 1.357E+01 0 0 -2.179E+02

Median 0 0 7.573E+01 1.357E+01 0 0 -1.197E+02
c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 0 0 0 0 0 0 0

Mean 0 0 5.931E+01 1.357E+01 0 1.690E+01 -1.205E+02
Worst 0 0 1.713E+02 1.357E+01 0 1.016E+02 -1.234E+01

std 0 0 4.990E+01 6.160E-05 0 4.732E+01 4.403E+01
SR 100% 100% 100% 100% 100% 60% 100%
vio 0 0 0 0 0 2.071E-03 0

Problem C08 C09 C10 C11 C12 C13 C14
Best -1.348E-03 -4.975E-03 -5.096E-04 -1.688E-01 3.988E+00 0 2.376E+00

Median -1.348E-03 -4.975E-03 -5.096E-04 -1.688E-01 3.988E+00 0 2.376E+00
c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 0 0 0 0 0 0 0

Mean -1.348E-03 -4.975E-03 -5.096E-04 -1.688E-01 3.988E+00 2.816E+00 2.386E+00
Worst -1.348E-03 -4.975E-03 -5.096E-04 -1.688E-01 3.989E+00 6.243E+01 2.623E+00

std 4.426E-19 2.656E-18 2.213E-19 7.986E-06 1.582E-04 1.247E+01 4.937E-02
SR 100% 100% 100% 100% 100% 100% 100%
vio 0 0 0 0 0 0 0

Problem C15 C16 C17 C18 C19 C20 C21
Best 2.356E+00 0 8.722E-02 3.660E+01 0 4.132E-01 3.988E+00

Median 2.356E+00 0 4.575E-01 3.660E+01 0 6.046E-01 3.989E+00
c 0, 0, 0 0, 0, 0 1, 0, 0 0, 0, 0 1, 0, 0 0, 0, 0 0, 0, 0
v 0 0 4.500E+00 0 6.634E+03 0 0

Mean 2.859E+00 0 5.276E-01 3.666E+01 0 6.179E-01 3.990E+00
Worst 5.501E+00 0 9.858E-01 3.822E+01 0 7.786E-01 3.992E+00

std 1.485E+00 0 4.682E-01 3.239E-01 0 9.810E-02 7.877E-04
SR 80% 100% 0 100% 0 100% 100%
vio 2.751E-04 0 4.500E+00 0 6.634E+03 0 0

Problem C22 C23 C24 C25 C26 C27 C28
Best 3.462E-27 2.376E+00 2.356E+00 0 1.252E+00 3.660E+01 1.495E+01

Median 3.462E-27 2.376E+00 2.356E+00 0 4.752E-01 3.660E+01 2.509E+01
c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 1, 0, 0 0, 0, 0 1, 0, 0
v 0 0 0 0 5.500E+00 0 6.654E+03

Mean 1.116E+00 2.395E+00 2.859E+00 1.005E+00 7.730E-01 3.660E+01 2.876E+01
Worst 3.987E+00 2.629E+00 2.357E+00 6.283E+00 5.357E-01 3.660E+01 3.841E+01

std 1.827E+00 6.393E-02 1.485E+00 1.749E+00 3.634E-01 1.787E-04 6.493E+00
SR 100% 100% 84% 100% 0 100% 0
vio 0 0 9.987E-05 0 5.020E+00 0 6.654E+03

TABLE VII
COMPARISON OF LSHADE44-IEPSILON WITH FOUR DE ALGORITHMS

BASED ON MEAN VALUES FOR 25 INDEPENDENT RUNS

vs. LSHADE44-IEpsilon Sign D = 10 D = 30 D = 50 D = 100

CAL-SHADE
+ 4 3 7 8
- 17 20 18 19
= 7 5 3 1

LSHADE44+IDE
+ 8 7 6 10
- 13 19 21 17
= 7 2 1 1

LSHADE44
+ 6 9 10 13
- 15 15 18 15
= 7 4 0 0

UDE
+ 6 8 11 9
- 16 17 17 18
= 6 3 0 1

TABLE VIII
COMPARISON OF LSHADE44-IEPSILON WITH FOUR DE ALGORITHMS

BASED ON MEDIAN VALUES FOR 25 INDEPENDENT RUNS

vs. LSHADE44-IEpsilon Sign D = 10 D = 30 D = 50 D = 100

CAL-SHADE
+ 4 5 6 11
- 14 15 16 15
= 10 8 6 2

LSHADE44+IDE
+ 5 7 7 8
- 12 13 17 16
= 11 8 4 4

LSHADE44
+ 3 7 9 10
- 15 13 13 14
= 10 8 6 4

UDE
+ 2 10 9 8
- 13 10 15 16
= 13 8 4 4

TABLE IX
RANK VALUES OF LSHADE44-IEPSILON AND FOUR COMPARED DE

ALGORITHMS FOR 25 INDEPENDENT RUNS

D = 10 D = 30 D = 50 D = 100
LSHADE44-IEpsilon 103 117 127 134

CAL-SHADE 171 179 195 199
LSHADE44+IDE 132 173 182 156

LSHADE44 144 139 148 140
UDE 123 143 160 172

the compared algorithms, which manifests that LSHADE44-
IEpsilon is a quite competitive algorithm for solving CSOPs
of CEC2017 benchmarks.
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TABLE III
VALUES ACHIEVED FOR D = 50, ALL RESULTS FOR C01 - C28.

Problem C01 C02 C03 C04 C05 C06 C07
Best 1.825E-26 4.065E-26 9.038E+03 1.357E+01 2.241E-26 1.118E+03 -5.343E+02

Median 4.269E-25 3.729E-25 1.635E+04 1.357E+01 3.743E-23 8.252E+02 -3.072E+02
c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 5 0, 0, 0
v 0 0 0 0 0 7.634E-04 0

Mean 1.620E-24 6.542E-25 2.434E+04 1.357E+01 3.189E-01 9.761E+02 -3.221E+02
Worst 9.429E-24 4.151E-24 6.060E+04 1.359E+01 3.987E+00 1.175E+03 -2.267E+02

std 2.766E-24 9.292E-25 1.719E+04 2.802E-03 1.104E+00 1.690E+02 7.019E+01
SR 100% 100% 100% 100% 100% 0 100%
vio 0 0 0 0 0 9.380E-04 0

Problem C08 C09 C10 C11 C12 C13 C14
Best -1.321E-04 -2.037E-03 -4.824E-05 -2.371E+03 1.794E+01 1.325E-10 1.100E+00

Median -1.141E-04 -2.037E-03 -4.793E-05 -2.782E+03 2.045E+01 3.961E-08 1.100E+00
c 0, 0, 0 0, 0, 0 0, 0, 0 1, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 0 0 0 1.007E+02 0 0 0

Mean -1.099E-04 -1.735E-03 -4.786E-05 -2.852E+03 2.735E+01 1.192E+01 1.104E+00
Worst -4.987E-05 1.164E-04 -4.712E-05 -3.686E+03 6.218E+01 9.939E+01 1.197E+00

std 1.881E-05 6.038E-04 2.873E-07 3.452E+02 1.312E+01 3.295E+01 1.938E-02
SR 100% 100% 100% 0 100% 100% 100%
vio 0 0 0 1.085E+02 0 0 0

Problem C15 C16 C17 C18 C19 C20 C21
Best 5.498E+00 1.257E+01 1.033E+00 3.647E+01 0 3.180E+00 3.981E+00

Median 8.639E+00 1.885E+01 1.034E+00 3.649E+01 0 3.487E+00 7.069E+00
c 0, 0, 0 0, 0, 0 1, 0, 0 0, 0, 0 1, 0, 0 0, 0, 0 0, 0, 0
v 0 0 2.550E+01 0 3.612E+04 0 0

Mean 8.765E+00 1.684E+01 1.018E+00 3.678E+01 0 3.503E+00 1.141E+01
Worst 1.492E+01 2.513E+01 1.008E+00 4.322E+01 0 3.813E+00 3.642E+01

std 1.920E+00 3.888E+00 1.706E-02 1.349E+00 0 1.763E-01 9.148E+00
SR 100% 100% 0 100% 0 100% 100%
vio 0 0 2.550E+01 0 3.612E+04 0 0

Problem C22 C23 C24 C25 C26 C27 C28
Best 1.384E+04 1.100E+00 8.639E+00 5.027E+01 1.047E+00 3.647E+01 2.818E+02

Median 1.475E+05 1.100E+00 8.639E+00 7.540E+01 1.039E+00 3.648E+01 2.719E+02
c 1, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 1, 0, 0 0, 0, 0 1, 0, 0
v 1.509E+01 0 0 0 2.550E+01 0 3.632E+04

Mean 1.256E+05 1.100E+00 9.268E+00 7.892E+01 1.033E+00 4.032E+01 2.793E+02
Worst 3.672E+05 1.102E+00 1.178E+01 1.131E+02 1.040E+00 5.620E+01 3.146E+02

std 7.199E+04 4.200E-04 1.283E+00 1.955E+01 7.981E-03 6.536E+00 2.154E+01
SR 8% 100% 100% 100% 0 100% 0
vio 1.811E+01 0 0 0 2.550E+01 0 3.632E+04

TABLE IV
VALUES ACHIEVED FOR D = 100, ALL RESULTS FOR C01 - C28.

Problem C01 C02 C03 C04 C05 C06 C07
Best 1.899E-08 1.056E-08 6.069E+04 1.362E+01 7.721E-05 2.997E+03 -7.120E+02

Median 1.632E-07 5.820E-08 1.509E+05 1.415E+01 4.161E+00 2.661E+03 -4.698E+02
c 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 0, 0, 6 0, 0, 0
v 0 0 0 0 0 5.032E-04 0

Mean 1.896E-07 1.034E-07 1.664E+05 1.441E+01 4.401E+00 3.001E+03 -4.771E+02
Worst 4.506E-07 4.845E-07 4.178E+05 1.592E+01 9.909E+00 3.112E+03 -2.979E+02

std 1.135E-07 1.101E-07 7.712E+04 7.528E-01 3.363E+00 3.385E+02 9.823E+01
SR 100% 100% 100% 100% 100% 0 100%
vio 0 0 0 0 0 5.753E-04 0

Problem C08 C09 C10 C11 C12 C13 C14
Best 1.040E-03 0.000E+00 9.066E-05 -7.235E+03 9.997E+00 6.133E+01 7.842E-01

Median 1.693E-03 1.552E-03 1.497E-04 -7.309E+03 1.886E+01 6.861E+01 8.172E-01
c 0, 0, 0 0, 0, 0 0, 0, 0 1, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0
v 0 0 0 9.755E+01 0 0 0

Mean 1.678E-03 4.181E-01 1.531E-04 -7.410E+03 1.884E+01 6.787E+01 8.359E-01
Worst 2.123E-03 2.556E+00 2.527E-04 -8.380E+03 3.159E+01 7.349E+01 9.500E-01

std 2.893E-04 7.813E-01 3.680E-05 2.454E+02 9.514E+00 3.140E+00 5.414E-02
SR 100% 100% 100% 0 100% 100% 100%
vio 0 0 0 1.072E+02 0 0 0

Problem C15 C16 C17 C18 C19 C20 C21
Best 1.492E+01 1.634E+02 1.095E+00 3.638E+01 0 8.021E+00 3.981E+00

Median 1.492E+01 1.838E+02 1.097E+00 3.722E+01 0 8.859E+00 9.997E+00
c 0, 0, 0 0, 0, 0 1, 0, 0 0, 0, 0 1, 0, 0 0, 0, 0 0, 0, 0
v 0 0 5.050E+01 0 7.297E+04 0 0

Mean 1.618E+01 1.880E+02 1.097E+00 3.786E+01 0 8.830E+00 9.344E+00
Worst 1.806E+01 2.325E+02 1.097E+00 4.222E+01 0 9.605E+00 1.886E+01

std 1.571E+00 1.737E+01 1.642E-03 1.822E+00 0 4.482E-01 5.362E+00
SR 100% 100% 0 100% 0 100% 100%
vio 0 0 5.050E+01 0 7.297E+04 0 0

Problem C22 C23 C24 C25 C26 C27 C28
Best 4.146E+05 7.857E-01 1.806E+01 4.650E+02 1.094E+00 3.638E+01 5.796E+02

Median 8.302E+05 7.882E-01 1.806E+01 5.042E+02 1.097E+00 7.191E+02 6.135E+02
c 1, 0, 0 0, 0, 0 0, 0, 0 0, 0, 0 1, 0, 0 1, 0, 0 1, 0, 0
v 1.293E+02 0 0 0 5.050E+01 4.053E+01 7.341E+04

Mean 7.874E+05 7.928E-01 1.806E+01 5.034E+02 1.097E+00 3.834E+02 6.152E+02
Worst 1.015E+06 8.188E-01 1.806E+01 5.419E+02 1.097E+00 1.271E+03 6.188E+02

std 2.614E+05 9.415E-03 1.400E-06 1.950E+01 2.092E-03 4.275E+02 2.696E+01
SR 0 100% 100% 100% 0 20% 0
vio 1.326E+02 0 0 0 5.050E+01 6.497E+01 7.341E+04


